Transition to 100% wind, water, and solar (WWS) for all purposes (electricity, transportation, heating/cooling, industry)

- Residential rooftop solar: 5.3%
- Solar plant: 36.9%
- Concentrated solar plant: 5%
- Onshore wind: 25%
- Offshore wind: 10%
- Commercial/govt rooftop solar: 6.9%
- Wave energy: 1%
- Geothermal energy: 3.1%
- Hydroelectric: 6.7%
- Tidal turbine: 0%

2050 PROJECTED ENERGY MIX

40-Year Jobs Created
Number of jobs where a person is employed for 40 consecutive years

- Operation jobs: 119,086
- Construction jobs: 87,315

Using WWS electricity for everything, instead of burning fuel, and improving energy efficiency means you need much less energy.

2050 Demand with BAU

-35% to

2050 Wind, Water, Solar

Data from Stanford University
Transition to 100% wind, water, and solar (WWS) for all purposes (electricity, transportation, heating/cooling, industry)

Avoided Mortality and Illness Costs

- Avoided health costs per year: $30.8B, 2.8% of GDP
- Air pollution deaths avoided every year: 4,178
- Plan pays for itself in as little as 2.0 years from air pollution and climate cost savings alone.

Future Energy Costs 2050

- BAU (Business as usual)
- WWS (Wind, water, solar)
- Average fossil-fuel energy costs*: 10 c/kWh
- Average WWS electricity costs: 9.1 c/kWh

*Health and climate external costs of fossil fuels are another 5.7c/kWh

Percentage of Land Needed for All New WWS Generators

- Footprint area: 0.16%
- Spacing area: 0.50%

Money in Your Pocket

- Annual energy, health, and climate cost savings per person in 2050: $4,178
- Annual energy cost savings per person in 2050: $287

= $500

Data from Stanford University